

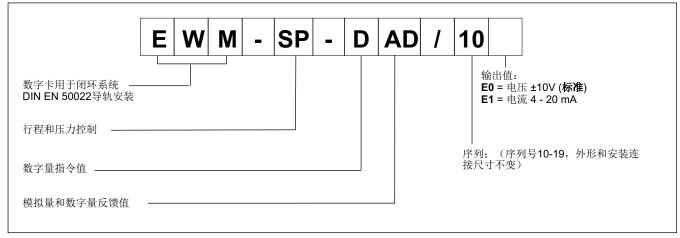
行程和压力轴控制卡 带PROFIBUS通讯接口 序列号 10

导轨式安装: DIN EN 50022

工作原理

- 此卡设计应用于驱动液压执行机构的高精度位置控制,使用带 SSI接口的数字量传感器检测位置,或者精度至0,01%的模拟 量传感器。
- 一此外,会执行一个集成压力限制控制,使用一个或者两个传感器(差动压力)。
- 一 该卡作为轴控制器工作,并且可以通过集成的Profibus接口和 PLC通讯,反之亦然。
- 该卡以三种方式进行工作:减速决定行程,NC模式,以及压力控制模式。
- 一 主要应用于带集成闭环压力控制的位置控制。
- 该卡使用RS232C接口,并且可使用配套组件(EWMPC),通过 笔记本电脑进行设定。

技术参数


电源	V DC	12 - 30 含波动值- 外部保险丝1,0 A
电流消耗	mA	400 + 传感器功率消耗
指令值		通过Profibus DP - ID号1810h
位置反馈值	SSI V mA	数字量传感器带任意SSI接口 0 - 10 (R _I = 33 kΩ) 4 - 20 (R _I = 250 Ω)
压力反馈值	V mA	0 - 10 (R _I = 33 kΩ) 4 - 20 (R _I = 250 Ω)
输出值: - E0 型 - E1 型	V mA	±10 (最大负荷 5 mA) 4 - 20 (最大负荷 390 Ω)
位置精度	%	±2位传感器分辨率
接口		RS 232 C
电磁兼容性 (EMC): 负荷 2004/108/CE 标准		辐射 EN 61000-6-3 抗扰性 EN 61000-6-2
外壳材料		热塑性塑料聚酰胺PA6.6 - 可燃等级 V0 (UL94)
外壳尺寸	mm	120(d) x 99(h) x 46(w)
插头		4x4 针旋紧端子- PE 直接经过DIN导轨
工作温度范围	°C	-20 / +60
防护等级		IP 20

89 440/112 CD 1/10

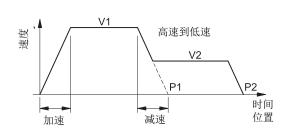
序列号 10

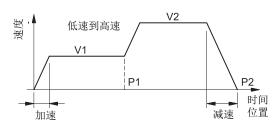
1-订货型号

EWM-SP-DAD卡用于位置和压力控制环路,可以合并一起使用,或者单个位置或压力使用。

该卡的设计可接受模拟量或者数字量,并且通过Profibus DP接口和PLC进行通讯。

此卡可以用作点对点控制器(减速决定行程)以及NC模式。


只需通过几个参数,即可优化控制器,并且可以通过Profibus预置运动曲线(位置和速度)。


以下是一个带切换速度的运动曲线示例:

- 目标位置为指令值2 (P2),结合相应的速度2 (V2)。
- 切换位置为指令值1 (P1),结合相应的速度1 (V1)。

从高速到较低速度的切换点,通过减速功能和V2计算获得。

从低速到高速的切换点,在P1位置通过减速斜坡实现,如下所示。 如果位置指令P2在当前位置和P1位置值之间,只能以V1速度向P2 位置运动。

压力限制控制功能:

对于p/Q控制,必须使用动态零遮盖比例阀。

压力环控制根据油缸两腔测得的压力实现。压力环的控制值通过 profibus进行维护(见第9.1.2节)。如果压力(或者力)超调,控制

器会减小给阀的输出信号(仅在负值范围内),直至其达到预设的 压力值。

从'位置模式'到'压力限制'的切换,会自动执行。

卡的采样时间为1 ms。

2 - 功能描述

2.1 - 电源

此卡设计的供电电源为12到30 VDC (典型值为24 V)。电源必须遵守实际的EMC标准。

必须为同一电源的所有电容(继电器,阀)提供超压保护(压敏电阻,自由轮二极管)。

推荐卡和传感器使用可调电源(线性或者开关模式)。

2.2 - 电气保护

所有的输入和输出,必须有抑制二极管和RC滤波器保护,以防瞬时 超调。

2.3 - 数字输入(ENABLE使能)

此卡可以接受数字量输入。数字输入的电压范围必须为12到24 V,低电平: < 4V, 高电平>12V 并且电流< 0,1A。见第8节的电气连接模块图。

2.4 - 参考输入信号

参考输入信号进入卡的总线,并通过 Profibus传递给各独立的模块, ID号 1810h (见第10节)。

2.5 - 位置反馈值

此卡可使用数字量传感器(SSI)或者模拟量传感器。

SSI: 参数通过软件进行设置 (参见下一页的SSI参数表)。

或者电流4-20 mA (250Ω),并且RI = 250 k Ω 模拟量分辨率为传感器行程的0,01%。

ANA: 模拟量信号必须为电压0 - 10V 并且 RI = 33 kΩ

使用模拟量传感器时,软件中的SSI参数保持默认的预设值, 用户不得进行修改。

89 440/112 CD **2/10**

序列号 10

2.6 - 压力反馈值

模拟量信号必须为电压 0 - 10V 并且RI = 33 k Ω 或者电流4 - 20 mA (250 Ω),并且 RI = 250 k Ω 。

如果出现传感器故障,(READY信号)硬件的使能信号必须取消触 发。

2.7 - 输出值

E0型:输出电压 0±10 V (标准)。

E1型: 输出电流4 - 20 mA (最大负荷 390Ω)。

2.8 - 数字量输出

可以提供两个数字量输出,INPOS和READY,通过前面板的LED灯 显示

低电平 <4V; 高电平>10V (I_{max} 50 mA 带负荷200 Ω)。

3 - LED灯功能

卡上有三个led灯:一个在profibus模块上,显示Profibus连接的在线状态,另两个在其他模块上:

绿色:显示卡是否已经准备就绪。

亮- 卡已供电

灭- 无电源或者ENABLE未被触发

闪烁- 检测到故障(内部或者4... 20 mA)。

只要SENS = ON

黄色:控制误差监测信号。

亮- 无控制误差

灭-检测到错误,取决于参数错误。

4 - 调节

对于EWM卡,只可以通过软件进行调节设置。

将卡和电脑连接起来后,软件会自动识别卡的型号,并显示含有所有可提供指令值的表格,包括它们的参数,默认设置,测量单位,指令的解释以及使用方法。

参数变更需要根据卡的型号进行。

5 - 软件组件包 EWMPC/10 (代码 3898401001)

软件组件包中,包括一根连接卡和台式电脑或者笔记本电脑的USB电缆(1.8 m长)以及软件。

在识别过程中,所有的信息将会从模块中读取,并自动产生输入表格。

部分功能用于加速安裝过程,例如波特率的设定,远程控制模式,用于过后估计的过程数据存储。

软件和Microsoft XP® 操作系统兼容。

参数表示例

指令	参数	默认值	单位	描述
inpx	X= SSI ANA	SSI	-	传感器输入通道选择。标准状态为带相应连接(端子25至28以及 31, 32)的SSI規格数字量传感器。作为选择,模拟量输入也可供使用,在指令中以参数"ANA"表示。 AIN指令用于确定模拟量输入的输入范围。
vmode x	x= on off	off	-	NC发生器触发。 处于OFF状态时,减速决定行程被触发,速度预置限制输出信号。 处于ON状态时,会有一个曲线发生器产生位置指令值,并且轴跟随定义的 速度向目标位置运动。 行程时间由参数VMAX定义。
pdpadr x	X= 1 126	5		Profibus地址
sens x	x= on off	on	-	传感器和内部故障监测触发。
stroke x	X= 2 3000	500	mm	传感器长度。 确定模拟量输入范围和计算减速行程,必须使用传感器行程 长度。
ssioffset x	X= -30000 30000	0	0,01 mm	传感器零点调整。
ssires x	X= 10 1000	1000	inkr/mm	数字量传感器分辨率。 传感器分辨率总是通过Profibus用于输入参数,并且为内部计算所必须(见 注释)。
ssibits x	X= 8 31	24	-	数据协议长度,单位bits
ssicode x	X= GRAY BIN	GRAY	-	传感器的传送代码。
ssipol x	X= + -	+	-	传感器极性。 为了反转传感器的工作方向,传感器的极性可以通过此指令进行改变。无论何种情况,SSIOFFSET也必须进行调节。 Ex: 传感器长度 = 200 mm 相反工作方向。 SSIPOL 被设定为 "-" 并且 SSIOFFSET 为20000。
ain:i abcx	i= XL XP1 XP2 a= -10000 10000 b= -10000 10000 c= -10000 10000 x= V C	: 10000 : 10000 : 0	- - 0,01%	模拟量输入缩放。 XL 用于位置, XP1 或者 XP2 用于压力。 (注释) 输入信号: V = 电压 以及 C = 电流。 有了参数a, b 和c, 输入可以确定(输出= a / b * (输入- c))。由于 x 值的编程(x = C),相应的输入将会自动被切换到电流。

89 440/112 CD 3/10

序列号 10

vramp	x	x= 1 2000	200	ms	外部速度斜坡时间。 大京付款法等可以对于工作等于
					改变外部速度可以减小工作震动。
vmax	x	X= 1 20000	50	mm/s	只有当vmode = ON时,此参数被触发。 vmax 定义了最大速度。 通过外部速度指令,在范围0,5 100 %内的实际 速度可供选择。
a:i	×	i= A B x= 1 2000	:A 200 :B 200	ms ms	取决于方向的加速时间。 A 代表模拟量输出15和 B 代表模拟量输出16。 通常 A = 流量P-A, B-T 和 B = 流量 P-B, A-T。
d:i	ж	i= A B S X= 50 10000	:A 2500 :B 2500 :S 1000	0,01% 0,01%	取决于方向的减速行程。 此参数以传感器最大长度的0,01%为单位进行设置。减速距离的设置取决于方向。 控制器的增益通过减速距离计算得到。减速距离越短,增益越高(参见指令CTRL)。倘若出现不稳定,则需要更长的减速行程。 参数D表示传感器最大长度和标示的停止点之间的比值;只有在'START'信号被移除后,才会被触发。
ctrl	x	x= lin sqrt1 sqrt2	sqrt1	-	控制功能选择: lin = 标准线性P控制, (注释); sqrt1 = 渐进时间优化减速曲线 sqrt2 = sqrt1带更高的位置增益
-	x	i= S D X= 0 5000	32	0,01%	InPos信号范围 (状态输出) S 用于静态INPOS窗口。 D 用于NC模式中的动态(跟随误差)监测。
hand:i	x	i= A B x= -10000 10000	:A 3300 :B -3300	0,01% 0,01%	手动模式中的速度指令,是用于A 和 B 两个方向。
ap:i	x	i= UP DOWN x= 0 60000	:A 100 :B 100	ms ms	压力上升和下降斜坡时间。
poffset	x	x= -2000 2000	0	0,01%	压力偏置。
c:i	х	i= P I D T1 IC :P x= 0 10000 :I x= 0 2050 :D x= 0 120 :T1 x= 0 100 :IC x= 0 10000	:P 50 :I 400 :D 0 :T1 1 :IC 5000	0,01 ms ms ms 0,01%	PID-用于压力控制的补偿器。 P-增益,50 = 额定增益 0,5。 I-增益,单位 ms,值大于 > 2010时取消触发。 D-增益,单位 ms。 T1 单位 ms;抑制D-增益 IC-系数;积分器的触发点。
perror	x	x= 02000	100	0,01%	指令'ERROR'定义了led灯显示错误信息的窗口。 但是控制器总是处于触发状态。
pol	x	x= + -	+	-	输出极性。 所有的 A 和 B 调节需要根据输出极性。必须先定义正确的极性。
save		-	-	-	将编制的参数存储到E ² PROM中。
loadback	¢ .	-	-	-	重新将E²PROM中的参数加载到工作RAM中。
default		-	-	-	预置值被设定。

wl	Command signal	-	-	数据监测过程。
xl	Actual signal			数据可以读取,并且显示实时指令和实际值。
v	Speed limitation			
xw	Position error (wl-xl)			
wp	Pressure command			
хр	XP1-XP2 (differential)			
xp1	Sensor pressure 1			
хр2,	Sensor pressure 2			
xwp	Pressure error			
up	Output of the pressure			
	control function			
u	Controller output			
st	-	-	-	监测状态字。此指令位于软件的'terminal' 工具中,可以用于读取二进制格
				式的状态字值。

N关于SSIRES指令的注释:标准的测量定义为:增长份数/mm (inkr/mm)。可提供的最大分辨率等于 $1 \mu m$ (0,001mm) 和值1000相对应。

89 440/112 CD **4/10**

序列号 10

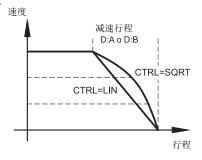
关于指令AIN的注释:此指令仅用于模拟量传感器。通过使用此指令,每一个输入均可以单独缩放。对于缩放比例的功能,可以使用下述线性 公式: 输出信号 = a/b*(输入信号-c)。

起初,偏置(c)从输入信号中扣除(以0.01%为单位),然后将信号乘以系数a/b。a 和 b 总是为正值。 通过这两个系数,可以模拟每一个浮点 的值(例如: 1.345 = 1345 / 1000)。

用试用x参数值,可以触发用于电流测量(4... 20 mA)的内部测量阻抗(V用于电压输入和C用于电流输入)。注意: k输入时,此电阻器永不被

	AIN:X	а	b	С	X	
i 电压信号:	AIN:i	1000	1000	0	V	
i 电流信号:	AIN:i	1250	1000	2000	С	

关于CTRL指令的注释:这一指令用于控制液压轴的减速特性。对于正遮盖比例阀,必须使用SQRT 速度 两个减速特性中的一个,因为需要将这些阀的典型非线性流量曲线线性化。如果使用零遮盖比例阀 (控制阀),可以根据应用,在LIN和SQRT1之间进行选择。SQRT1的渐进增益特性具有更好的定

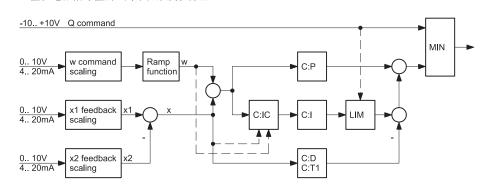

根据应用可能产生更长的减速距离,因此整个行程时间将会更长。

LIN: 线性减速特性(控制增益相当于: 10000 / d:i)。

SQRT*: 减速曲线计算的根函数。

SQRT1: 控制误差较小。控制增益相当于30000 / d:i;

SQRT2: 控制增益相当于50000 / d:i。



关于指令C的注释(压力限制功能):控制功能通过此指令参数化。P,I和D增益和标准的PID控 制器相似。 T1系数用于过滤D增益, 从而抑制高频噪音。

为了减小压力超调, 用于积分器的触发点通过IC的值编程。如果实际压力高于编制的阈值,积分器 被触发:

$$I on = x > \frac{w \cdot c : ic}{100\%}$$

c.ic = 0 时,积分器总是处于触发状态。是用较高的IC值和较小的P增益时,运动的速度受到限制。 IC值以电流指令值的%为单位触发积分器。

压力限制功能 C:P P-增益 I-增益 C:I C:D D-增益 D-增益讨滤 C·T1 C·IC 积分器触发

6 - 安装

此卡为导轨式安装设计,符合DIN EN 50022形式。

接线通过位于电子控制单元底部的接线端子完成。推荐截面积0.75 mm²,长度至20 m的电缆,以及截面积1.00 mm²,长度至40m的电 缆,用于电源和电磁铁的连接。对于其他连接,推荐使用带屏蔽护 套的电缆,且仅卡侧接地。

注释 1

为了遵守EMC要求,控制单元的电气连接必须严格参照接线图。 通常, 阀和电子单元的接线必须尽量远离干扰源(例如动力电缆, 电机,交换器和电气开关)。

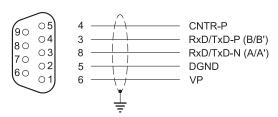
在有电磁干扰的环境下, 必须对接线做全面保护。

89 440/112 CD 5/10

序列号 10

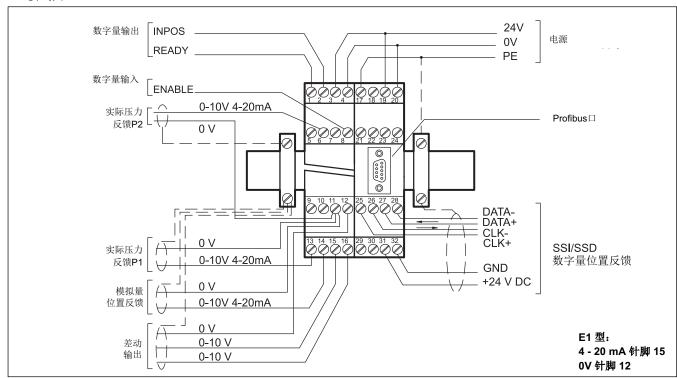
6.1 - Profibus功能

此模块支持从9,6 kbit/s至12000 kbit/s的波特率,并且可以自动监测波特率。此功能按照IEC 61158定义。Profibus地址可以通过软件 EWMPC/10或者通过Profibus在线进行编程。有一个诊断LED指示在线状态。


根据要求,迪普马可以提供用于PLC 和 EWM之间 Profibus通讯的 .GSD配置文件。

用于输入和输出变量的通讯参数为16字节 (8字)。

6.2 - Profibus □


强制使用典型的Profibus屏蔽插头(D-Sub 9针,带切换终端)。 地址可以预置,并且通过Profibus 进行修改(默认值 = 3)。电缆不包含在内。

PROFIBUS 口接线和连接配置

针脚	信号名称	功能
1-2-7-9	不使用	-
3	RxD/TxD-P (B-Line)	接收/发送 P数据
4	CNTR-P/RTS	要求发送
5	DGND	数据接地
6	VP	+5 V DC 用于外部总 线终端
8	RxD/TxD-N (A-Line)	接收/发送 N数据

7-接线图

模拟量输入和输出

针脚 模拟量压力反馈值 (XP2),

6 范围 0 - 100% 对应 0 - 10V 或者 4 - 20 mA

针脚 模拟量压力反馈值 (XP1),

13 范围 0 - 100% 对应 0 - 10V 或者 4 - 20 mA

针脚 模拟量位置反馈值 (XL),

14 范围 0 - 100% 对应 0 - 10V 或者 4 - 20 mA

针脚 差动输出 (U)

15/16 ±100% 对应 ± 10V 差动电压,

选项 (E1型) 电流输出 ±100% 对应4 - 20 mA (针脚 15至

针脚12)

数字量输入和输出

针脚 ENABLE 输入:

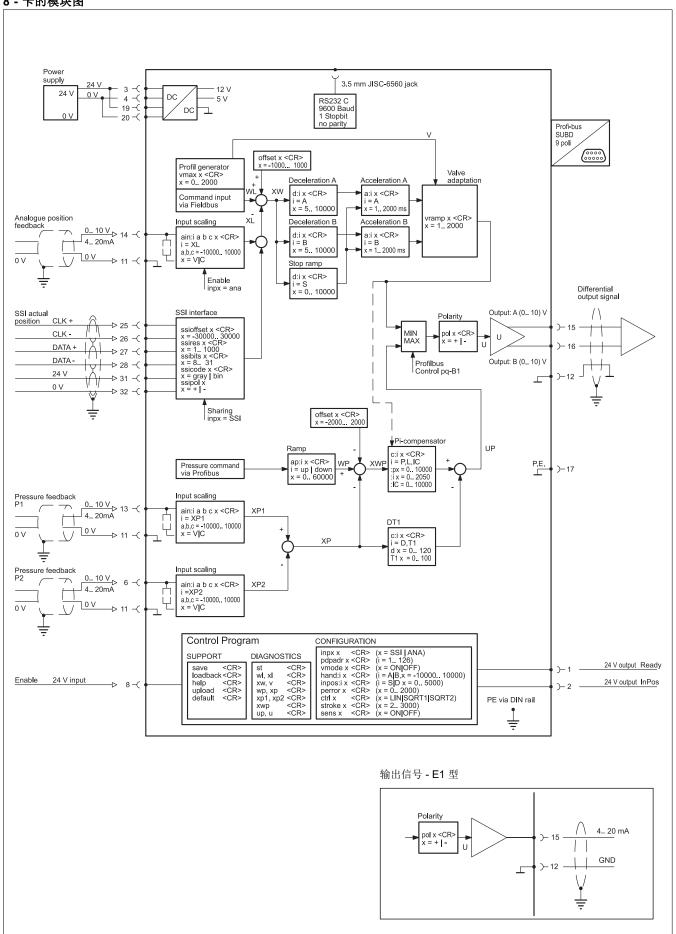
8 此数字量输入信号对应用进行初始化。模拟量输出将被触发,并且READY信号指示所有的元器件正常工作与否。目标位置被设置为实际位置,并且运动处于闭环控制。

SSI 传感器接口

PIN 25 CLK+ 输出

PIN 26 CLK- 输出

PIN 27 DATA+ 输入


PIN 28 DATA- 输入

PIN 31 24V SSI 传感器电源 PIN 32 0V SSI 传感器电源

89 440/112 CD 6/10

8-卡的模块图

89 440/112 CD 7/10

序列号 10

9 - PROFIBUS 通讯

PROFIBUS 接口总是以可能的最高分辨率工作,取决于所使用的传感器满量程分辨率。

此模块通过profibus接收来自PLC的8字节数据,相关信息包括控制字,两个位置指令,两个速度指令和压力值。

卡发送的相关信息包括状态字,传感器检测到的压力和位置值,以及差动压力,一共是**16**字节数据。

在EWMPC软件中使用ST指令,这些数据可以读取出来,并且以以下方式出现:

(高字节 / 低字节) 控制字: 0000 0000 / 0000 0000 使能: ENABLE (卡使能; Profibus &硬件激活)

9.1 - 向轴传输的数据:

Profibus接口按照如下进行设置: (Hi = 高字节: Lo = 低字节)

字节	功能	说明
0	控制字 Hi	
1	控制字 Lo	不使用
2	位置指令 1 Hi	
3	位置指令 1	
4	位置指令 1	
5	位置指令 1 Lo	
6	速度 1 Hi	
7	速度 1 Lo	
8	位置指令 2 Hi	
9	位置指令 2	如果编制了第二个速度(字节 13 和 14),
10	位置指令 2	使《子月13和14》, 触发
11	位置指令 2 Lo	
12	速度 2 Hi	设置为零,取消触发
13	速度 2 Lo	以且刈令,取捐熈及
14	需求压力 Hi	
15	需求压力 Lo	

9.1.1 - 控制字

控制字包含以下信息:

ENABLE: 除了硬件信号之外,此信号必须被触发。

START: 通过信号从低到高的变化(从0到1),新的位置指令

被接受。通过取消触发此位,系统按照编程的减速

斜坡停止。

HAND+: 手动模式。

HAND-

 PQ:
 压力限制模式触发。

 PI
 改变压力限制的方向。

 0 = 压力限制在伸出方向

1= 压力限制在退回方向 在两个方向,均使用正的需求压力值。通过此位改

变极性。

控制字按如下定义:

	字节 0 - 控制字 Hi			
位	功能			
0				
1				
2	PI inverse	1 = 触发		
3	PQ active	1 = 触发		
4	Hand-	1 = 触发		
5	Hand+	1 = 触发		
6	Start	1 = 触发		
7	Enable (带硬件使能)	1 = 准备就绪		

9.1.2 - 位置设定点描述

位置指令: 按照传感器分辨率。

字节 2, 3, 4 和 5 - 位置指令 1			
位	功能 由传感器分辨率定义		
从 0 至 7	位置指令 Lo 字节	字节 5	
从8至15	位置指令	字节 4	
从 16 至 23	位置指令	字节3	
从 24 至 31	位置指令 Hi 字节	字节 2	

字节 8 至 11 - 位置指令 2			
位	功能 由传感器分辨率定义		
从0至7	位置指令 Lo 字节	字节 11	
从8至15	位置指令	字节 10	
从 16 至 23	位置指令	字节 9	
从 24 至 31	位置指令 Hi 字节	字节 8	

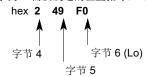
SSI传感器位置控制计算示例

分辨率= 5 µm 并且 100% 行程= 300 mm。

位置设定点 = 150 mm (= 50% 行程)

STROKE • SSIRES = 100% 行程 (dec)

 $300 \cdot 200 = 60.000 \text{ (dec)} \rightarrow \text{EA60 (hex)}$ $50\% \text{ di } 60.000 = 30.000 \text{ (dec)} \rightarrow 7530 \text{ (hex)}$


模拟量传感器位置控制计算示例,并且100% 行程 = 300 mm。使用模拟量传感器,SSIRES值必须预置且不可以更改。

位置设定点 = 150 mm (= 50% 行程)

STROKE • SSIRES = 100% 行程 (dec)

300 • 1000 = 300.000 (dec) \rightarrow 493E0 (hex) 50% di 300.000 = 150.000 (dec) \rightarrow 249F0 (hex)

示例: 需要发送的位置指令, 十进制值150000:

89 440/112 CD **8/10**

序列号 10

9.1.3 - 速度设定点描述

速度指令: 0x3fff 对应100 %。

字节 6 和 7 - 速度指令 1			
位	功能最大值 0x3FFF		
从0至7	速度 Lo 字节	字节 7	
从8至15	速度 Hi 字节	字节 6	

字节 12 和 13 - 速度指令 2			
位	功能		
从0至7	速度 Lo 字节	字节 13	
从8至15	速度 Hi 字节	字节 12	

9.1.4 - 需求压力描述

0x3fff 对应100 %.

字节 14 和 15 - 需求压力			
位	功能最大值 0x3FFF		
从0至7	需求压力 Lo	字节 15	
从8至15	需求压力 Hi	字节 14	

9.2 - 发送至profibus的数据

发送至profibus接口的数据包括:两个位置状态字,发送的指令(位置,速度和压力)以及当前的实际值,总共是16字节数据。

(Hi = 高字节; Lo = 低字节)

字节	功能	说明
0	控制字 Hi	
1	控制字 Lo	不使用
2	实际位置 Hi	
3	实际位置	
4	实际位置	
5	实际位置 Lo	
6	内部位置指令 Hi	
7	内部位置指令	
8	内部位置指令	
9	内部位置指令 Hi	
10	压力差值 xp Hi	
11	压力差值 xp Lo	
12	压力反馈 <i>xp1</i> Hi	
13	压力反馈 <i>xp1</i> Lo	
14	压力反馈 <i>xp2</i> Hi	
15	压力反馈 xp2 Lo	

9.2.1 - 状态字描述

READY: 系统已经准备就绪,可以定位。

INPOS: 到位信号。

PERROR: 压力故障高于编制的错误值。

传感器故障: 如果传感器控制被触发,并且存在一个传感器故

障,READY信号将被取消触发。

位置指令:根据模式,有各种不同的理解。

常规 = 预置位置指令

NC模式 = 计算发生器的位置指令

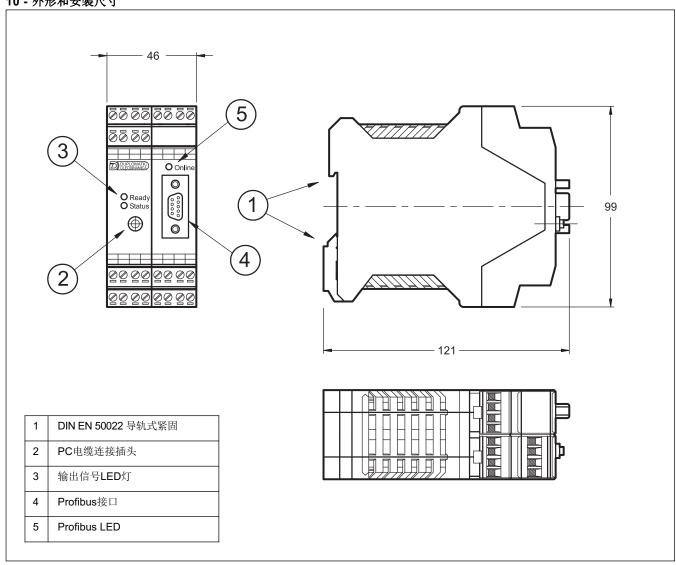
实际位置:按照传感器的分辨率。 控制偏差 (x-w):按照传感器的分辨率

在NC模式中,显示曲线误差。

(额定值发生器的值和实际值之间的差值)

状态字按照如下编码:

字节 0 - 状态字 Hi			
位	功能		
0			
1			
2			
3	PERROR	1 = 错误窗口的值	
4			
5			
6	INPOS	1 = 位置窗口的值	
7	READY	1 = 准备工作	


字节 2, 3, 4 和 5 - 实际位置			
字节	功能 由传感器分辨率定义		
从0至7	实际位置 Lo字节	字节 5	
从8至15	实际位置	字节 4	
从 16 至 23	实际位置	字节 3	
从 24 至 31	实际位置 Hi字节	字节 2	

字节 6 至 9 - 内部位置指令			
字节	功能 由传感器分辨率定义		
从0至7	位置指令 Lo字节	字节 9	
从8至15	位置指令	字节 8	
从 16 至 23	位置指令	字节 7	
从 24 至 31	位置指令 Hi字节	字节 6	

89 440/112 CD 9/10

10 - 外形和安装尺寸

DUPLOMATIC OLEODINAMICA S.p.A. Tel:0769-22714386 Fax:0769-22789076 http://www.duplomatic.cn mail:sales@duplomatic.cn